Dealing with Communications Outage Risks

Los Altos Hills Emergency Communications Committee

7 February 2017

Jim Oberhofer EC, Cupertino ARES/RACES

Topics

- 1. Managing Risks; recommendations
- 2. A mutual problem and proposal
- 3. Are the risks real?
- 4. Understanding the risks... what could fail
- 5. What could cause a failure
- 6. Some light reading

Looking at the Risks

What's been done so far

- National Infrastructure Protection Plan (NIPP)
 - FEMA, 2006, Risk Management Framework to address pre-existing threats that may occur from natural disasters, cyber-attacks, and terrorism.

Critical Infrastructure Sectors

- 1. Chemical
- 2. Commercial Facilities
- 3. Communication
- 4. Critical Manufacturing
- 5. Dam
- 6. Defense Industrial Base
- 7. Emergency Services
- 8. Energy

- 9. Finance Services
- 10. Food and Agriculture
- 11. Government Facilities
- 12. Healthcare and Pub Health
- 13. Information Technology
- 14. Nuclear Reactor, Mat'ls, Waste
- 15. Transportation Systems
- 16. Water and Wastewater

Looking at the Risks

What's been done so far

- National Infrastructure Protection Plan (NIPP)
 - Communications Sector-Specific Plan (CSSP)

An approach to a local risk assessment

- **1. What could fail?** (potentially impacted systems)
 - - Telephony · Messaging
 - Internet

- Video
- others? Radio
- 2. What could cause a failure? (impacting events vs. initiating hazards)
 - loss of power
 - loss of connectivity
 - system overload
- **3.** How likely is it to occur? (characterize the risk)
 - redundancy, diversity, recoverability
 - probability and seriousness
- **4.** What do we do when it does occur? (develop the plan, prioritize actions)
 - *mitigations* & *contingencies*
 - recommendations

Managing Communications Risks

What can we control?

- Local backup generators
- Local 2-way radio systems
- AM TIS Stations
- Ham Radio
- First responders, local staff and volunteers

This implies that we should...

apply Mitigations here

What can't we control?

- Power generation and distribution
- Landline telephone network
- Cellphone network
- Digital network

apply Contingencies here

Recommendations for Cupertino


What do we do when it does occur? – mitigations & contingencies

1.3 RECOMMENDATIONS FOR THE CITY

- 1. Move the TIS station to a more secure facility, or retrofit City Hall.
- 2. Complete the TIS station backup battery upgrade.
- 3. Improve the reliability of the City Hall backup generator.
- 4. Define the Public Information Outreach plan.
- 5. Define the Community Emergency Assistance Request Intake plan (**9-1-1 alternate**).
- 6. Complete the build-out of the Cupertino Emergency Intranet (ARKnet).
- 7. Perform testing of specific backup communications measures.
- 8. Explore other emerging technologies and means for communicating with the community during an emergency.

1.4 RECOMMENDATIONS FOR THE COMMUNITY

- 9. Public Outreach to the community:
 - a. Encourage residents to have a car cell-phone charger.
 - b. Encourage they have at least one corded phone for home wireline telephones.
 - c. Encourage every home to have a portable AM/FM radio.

Problem / Situation

- 1. County Comm receives assistance requests by the 9-1-1 system, and ad hoc reports from Sheriff, Fire, EMS, and other PSAP data transfers.
- 2. Three Santa Clara County cities Cupertino, Saratoga, Los Altos Hills contract with the County for all their public safety and PSAP/dispatch services.
- 3. A wide spread / extended communications outage is possible and would be caused by:
 - natural disasters (earthquakes)
 - accidental causes (cable cuts)
 - intentional causes (cable cuts, wide spread power outages, infrastructure hacks)

Problem / Situation

- 4. On loss of telephone service,
 - jurisdictions with their own PSAPs can receive 9-1-1 requests from local public safety and volunteer organizations, such as RACES.
 - jurisdictions without their own PSAPs do not have a defined process to get 9-1-1 requests to County Comm by an alternate means.
- 5. To address this, County Comm preferred for these cities to pass 9-1-1 requests by amateur radio to RACES members deployed to, and operating at, County Comm.

- PROPOSAL
- 1. County RACES manages incremental activities and training on County Comm Operations for RACES MAC responders.
- 2. County Comm amateur radio equipment is in place, tested, and operational.
- 3. A process exists to gain access to County Comm Amateur Radio equipment.
- 4. 9-1-1 request messages from the field Amateur Radio operators are correctly formatted and sufficiently complete to facilitate a 9-1-1 dispatch.

Deliverables – County Comm

- PROPOSAL
- Develop the procedural details on the information hand-off from County RACES to County Comm dispatch (Objective #1)
- 2. Implement an access control policy change to accommodate responding County RACES MACs (Objective #3)
- 3. Confirm the minimum 9-1-1 message definition (Objective #4)

Deliverables – SCC RACES

- 1. Training material, scheduling, and notifications on a County Comm operations course (Objective #1)
- 2. Equipment Plan what to buy (Objective #2)
- 3. Equipment Test Plan. Periodic equipment testing is required to confirm its readiness (Objective #2)
- 4. Process for periodic notification to County Comm with the list of County RACES MACs who are qualified to operate from County Comm RACES Radio Room (Objective #3)
- 5. Field Forms. Adopt or adapt County Comm's manual process paper form for field use (Objective #4)
- Automated Tools. Develop application add-ons to Packet Radio that manage the workflow for collecting and transmitting 9-1-1 field requests to County Comm's (Objective #4)

Project Start:1 March 2017Requirements Checkpoint:1 April 2017Design Checkpoint:1 May 2017Deployment Checkpoint:1 August 2017System Test:1 November 2017

Are the risks real?

Dealing with Comm Outage Risks

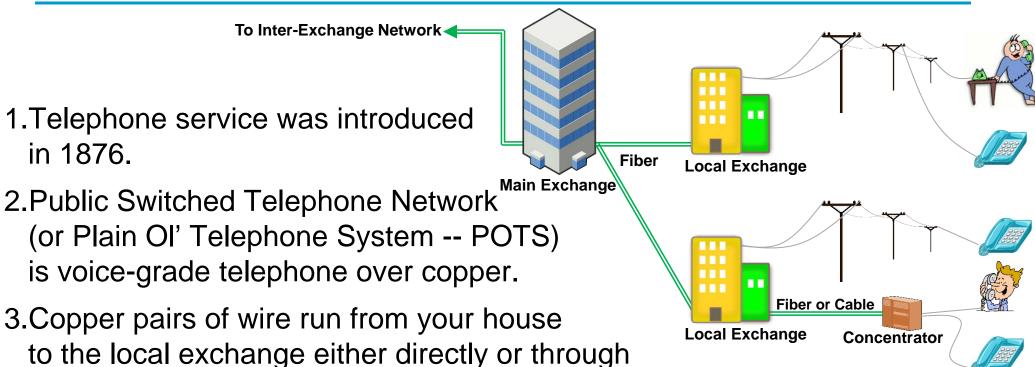
Looking at the Risks

What's been done so far

- National Infrastructure Protection Plan (NIPP)
 - Communications Sector-Specific Plan (CSSP)

An approach to a local risk assessment

- **1. What could fail?** (potentially impacted systems)
 - - Telephony · Messaging
 - Internet

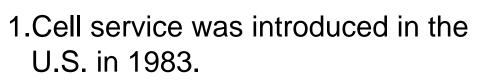

- Video
- others? Radio
- 2. What could cause a failure? (impacting events vs. initiating hazards)
 - loss of power
 - loss of connectivity
 - system overload
- **3.** How likely is it to occur? (characterize the risk)
 - redundancy, diversity, recoverability
 - probability and seriousness
- **4.** What do we do when it does occur? (develop the plan, prioritize actions)
 - *mitigations* & *contingencies*
 - recommendations

Landline Telephone Network

What could fail?

a digital concentrator.

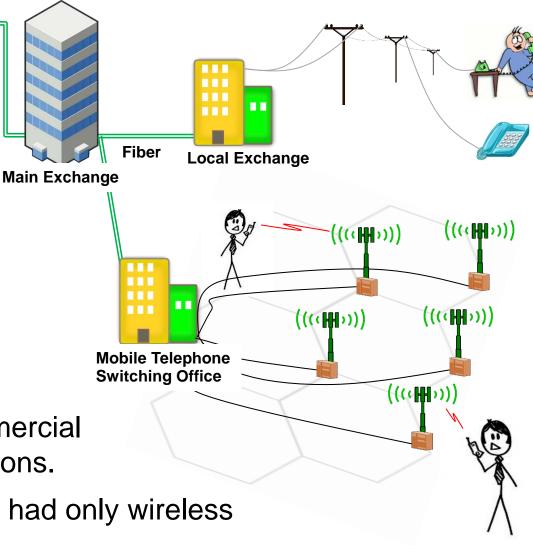
Febuary 2017



- 4.Local calls are kept local; Out of area calls are switched to the Inter-exchange Network.
- 5.In 2013, there were 1.16 billion landline subscribers worldwide.

Cellular Telephone Network

To Inter-Exchange Network


What could fail?

- 2.Each cell is typically sized at about 10 square miles.
- 3.Cell phones and base stations use low-power transmitters, thereby allowing the same frequencies can be reused in nonadjacent cells.

Febuary 2017

- 4.Most cell sites are powered by commercial power or generators at remote locations.
- 5.As of 2015, 48% of U.S. households had only wireless phones, up from 38 % in 2012.

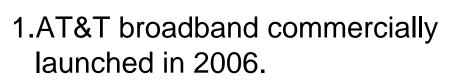
Digital Telephone, Cable Data Network

What could fail?

Comcast Regional Area Network, Inter-exchange Network 1.Cable TV was introduced in 1963. 2.Comcast broadband was launched in 1996.

- 3.VoIP phone service was introduced in 2006.
- 4.Uses the existing cable TV system for TV, data, VoIP phone service delivery.

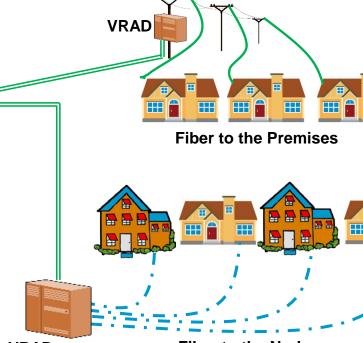
Febuary 2017


- **5.Headend:** the master facility for receiving television signals for processing and distribution over a cable television system.
- **6.Distribution Amplifiers:** ensures a sufficient signal level down the path.
- 7.Coax Splitter: splits signal for TV, Internet, and Phone.

Distribution Amplifiers

Digital Telephone, DSL Data Network

What could fail?



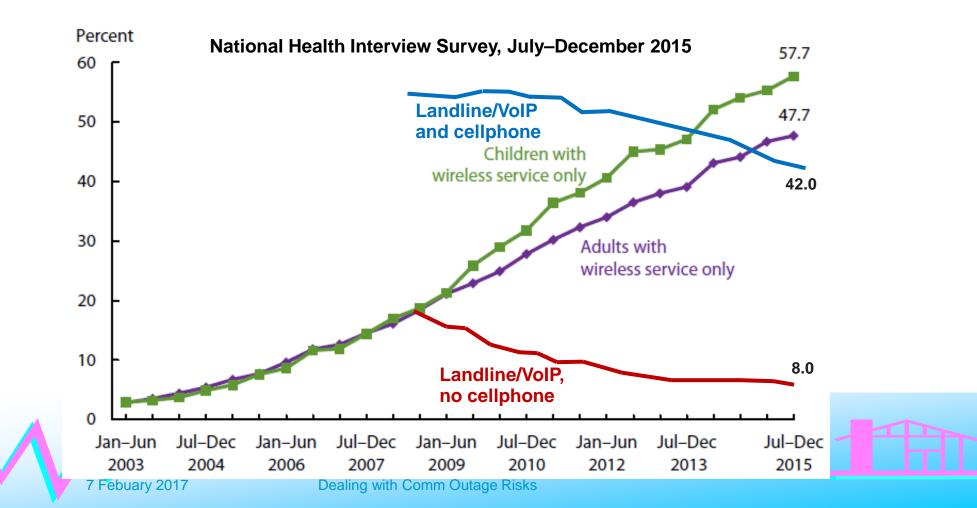
Febuary 2017

2.Uses the existing telephone network.

- 3. Fiber-to-the-Premise: fiber to the home.
- 4.Fiber-to-the-Node; fiber to a VRAD, then twisted pair to the home.
- 5. VRAD: <u>Video Ready Access Device</u>; combines vrad voice and data (DSLAM) with the TV stream to the home.

To Inter-Exchange Network

Fiber to the Node; Twisted Pair to the House

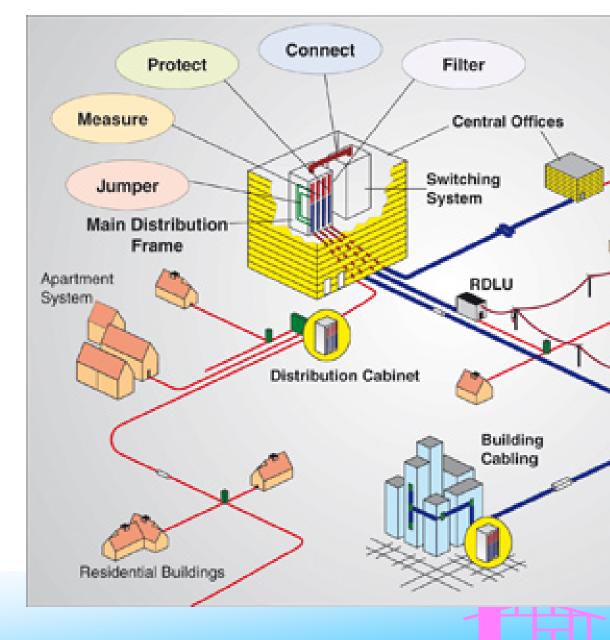

DSLAM: <u>Digital Subscriber Line Access Multiplexer</u>; combines end voice and data traffic into one signal; at the Central Offices or VRADs.

Telephone use... by the numbers

What could fail?

The Jan-Dec 2015 CDC/NHI Survey showed...

- nearly one-half of American homes have only wireless telephones.
- 7.2% have a POTS or VoIP phone only.


What could fail?

1. Everything connects together

... in the physical world of wire, cable, or fiber sooner or later.

- 1. Wired Telephone
- 2. Cellular phone
- 3. AT&T, Comcast, Sprint, Verizon, other carriers

7 Febuary 2017

What could fail?

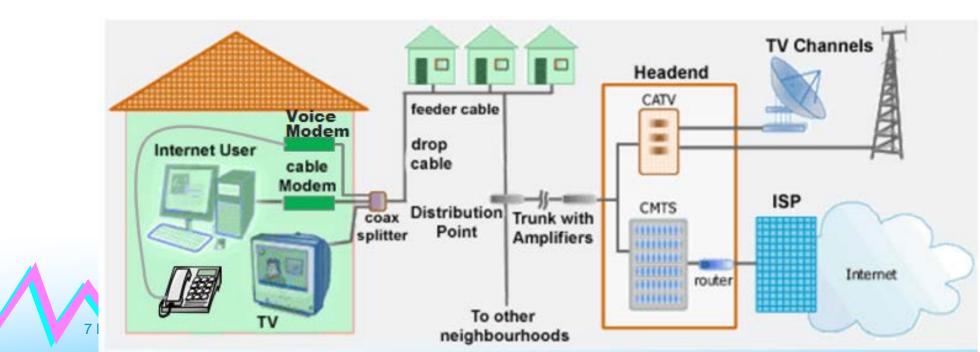
2. All require power to operate

Landline Telephone Network

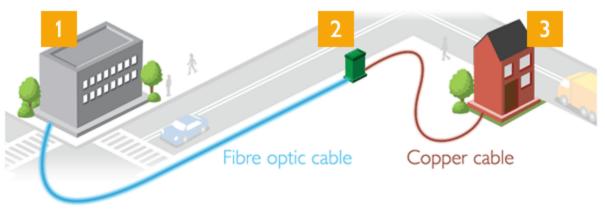
- 1. The *phone company powers your phone* with an extensive battery system with backup generators at Local Exchange offices.
- 2. Operates at 6 to 12 volts DC, ~30ma.
- 3. 90VAC for the ring signal, as provided by the Local Exchange.
- 4. During a power failure, wired phones will continue to work,
- 5. ... provided at least one is a "corded" phone.

What could fail?

2. All require power to operate Cellular Telephone Network


- 1. Towers, controllers fed from commercial power.
- 2. Backup batteries are built into most standard power systems.
- 3. Batteries can last from 2 to 8 hours, depending on their configuration.
- 4. Generators are also used to avoid service interruption.

What could fail?


2. All require power to operate Comcast Digital Network

- 1. Central Office / Headend: backup generators, batteries.
- 2. The *voice phone modem* requires a *backup battery* to ensure telephone service remains operational during a power outage.

What could fail?

2. All require power to operate AT&T Digital Network

- 1. Central Office: gen & battery backup.
- 2. VRAD Neighborhood boxes; backup NiMH batteries, 2-4 days of power.

Febuary 2017

3. Wi-Fi Resident Gateway; with phone service, includes a Belkin 12V, 7Ah SLA.

What could cause a failure?

Impacting Events

Loss of Power

- Power failures accidental, natural, intentional
- Loss of Connectivity
 - Cable breaks accidental, natural, intentional

System Overload

• Some out-of-the-ordinary event that causes a lot of people to use the phone at the same time

• Solar Storms, Solar Flares

Power loss and Comm outages

What could cause a failure?

Date	Event	Duration	Impact (people)
Accidental			
November 1965	Northeast Blackout	13 hours	30,000,000
October 2003	Northeast Blackout	1-2 days	55,000,000
September 2011	Pacific Southwest	12 hours	7,000,000
			, ,

Natural...

October 1989	Loma Prieta Earthquake	2-3 days	1,400,000
January 1994	Northridge Earthquake	1 week	300,000
September 2005	Katrina	Weeks	3,900,000

Intentional...

7 Febuary 2017

April 2013	Metcalf Sniper Attack	27 days	None
December 2015	Ukrainian Cyber Attack	6 hours	225,000

Power loss and Comm outages

What could cause a failure?

Intentional – Other Reports

- Parts of the U.S. power grid are attacked online or in person every 4 days.
- From 2011 to 2014: the U.S. Department of Energy received 362 reports from electric utilities of physical or cyber-attacks that interrupted power services.

Connectivity loss and Comm outages

What could cause a failure?

Date	Event	Duration	Impact (people)
Accidental			
March 2015	Arizona	12 hours	1,000's
2013	San Juan Islands, WA	10 days	1,000's
March 2012	Morgan Hill	1 day	1,000's

Dealing with Comm Outage Risks

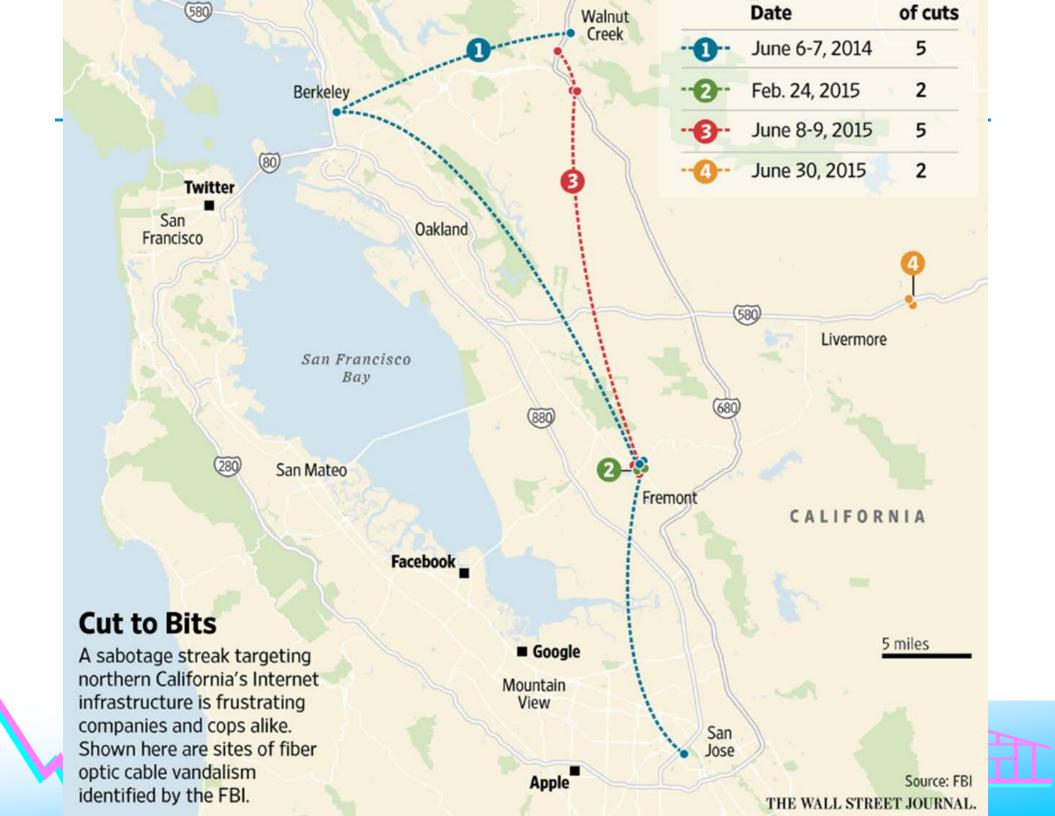
Connectivity loss and Comm outages

What could cause a failure?

Intentional – in the news

- April 2009, San Jose
 Event: Underground fiber-optic cables were cut
 Impact: outage of landlines, cell, and Internet for 10,000's in 3 counties
- June 30, 2015, Sacramento
 - *Event:* three major fiber cables connecting the region were cut *Impact:* disrupted service to Sacramento, Rocklin; ~15 hour outage

• July 1, 2015, San Jose


- *Event:* Break-in to an underground vault; vandals cut 3 fiber-optic cables belonging to Level 3 and Zayo.
- July 15, 2015, San Joaquin County Event: Fiber optic line intentionally cut Impact: 9-1-1 outages; 10 hour outage.
- September 3, 2015, CA North Coast Event: Vandals cut AT&T fiber cable in Hopland Impact: disrupted Internet, landline and cellphone service.

Connectivity loss and Comm outages

What could cause a failure?

Intentional – and then the consolidated FBI report-out of even more cable cuts throughout the Bay Area

- July 6, 2014, 9:44 p.m., Berkley. Near 7th St. and Grayson St.
- July 6, 2014, 11:39 p.m., Fremont. Niles Canyon Blvd and Mission Blvd.
- July 7, 2014, 12:24 a.m., Walnut Creek. Jones Road and Iron Horse Trail.
- July 7, 2014, 12:51 a.m., Fremont. Niles Canyon Blvd. and Alameda Creek.
- July 7, 2014, 2:13 a.m., San Jose. Stockton Ave. and University Ave.
- Feb 24, 2015, 11:30 p.m., Fremont. Niles Canyon Blvd. and Mission Blvd.
- Feb 24, 2015 11:30 p.m., Fremont. Niles Canyon Blvd. and Alameda Creek.
- June 8, 2015, 11:00 p.m., Alamo. Danville Blvd. and Rudgear Road.
- June 8, 2015, 11:40 p.m., Fremont. Overacker Ave. and Mowry Ave.
- June 9, 2015, 1:38 p.m., Walnut Creek. Jones Road and Parkside Dr.

System Overloads and Comm outages

What could cause a failure?

Natural (2 examples)

- July 30, 2008, Los Angeles.
 - 5.4 earthquake, San Bernardino County.
 - Cell phone lines were jammed.
 - No damage was reported to the network infrastructure.
- August 23, 2011, Washington DC.
 - 5.8 earthquake, central Virginia.
 - Cell phone networks were jammed in Manhattan, Washington D.C., other areas.
 - SMS could get through.

Febuary 2017

 Major carriers reported no major problems with their network infrastructure.

Solar Storms and Comm outages

What could cause a failure?

Date	Event	Duration	Impact (people)
September 1859	Solar Storm (Carrington)	Unknown	Unknown
August 1972	Solar Flare, Illinois	Unknown	Unknown
March 1989	Solar Flare, Quebec	9 hours	6,000,000

- In 2012, NASA said the sun unleashed two massive plasma clouds that *barely missed* a catastrophic encounter with Earth.
 - "A direct strike could've caused widespread power outages and other damaging effects."
 - "If it had hit, we would still be picking up the pieces 2 years later."
 - NASA also cited research suggesting that there is a 12% chance of something like this happening in the next decade.

- POTS will be gone within 5-10 years.
- Fewer fiber optic cable paths means wider impact when a cable break occurs.
- Intentional cable cuts are up.
- Communications is growing more dependent on distributed (versus central) power sources.
- Cyber attacks on the power grid are also increasing.
 - The Ukraine cyber-attack pointed out the high degree of sophistication, coordination, and planning that occurred.

Some light reading

- Inside the Cunning, Unprecedented Hack of the Ukraine's Power Grid, 3/3/2016, Kim Zetter, Wired
- 2. <u>The National Power Grid Is Under Almost Continuous Attack, Report Says</u>, 3/25/2015, Sabrina Toppa, Time
- *3. <u>How America Could Go Dark</u>*, 7/14/2016, Rebecca Smith, Wall Street Journal (at least watch the video, 4½ min)
- 4. American Blackout 2013, National Geographic, 1hr 27 min
- 5. Lights Out: A Cyberattack, A Nation Unprepared, Surviving the Aftermath, Ted Koppell, Crown Publishers

For an on-line list of links, go to... <u>www.cupertinoares.org/commoutage.html</u>

Questions?

Dealing with Comm Outage Risks